550 research outputs found

    Quantifying uncertainty in satellite-retrieved land surface temperature from cloud detection errors

    Get PDF
    Clouds remain one of the largest sources of uncertainty in remote sensing of surface temperature in the infrared, but this uncertainty has not generally been quantified. We present a new approach to do so, applied here to the Advanced Along-Track Scanning Radiometer (AATSR). We use an ensemble of cloud masks based on independent methodologies to investigate the magnitude of cloud detection uncertainties in area-average Land Surface Temperature (LST) retrieval. We find that at a grid resolution of 625 km^2 (commensurate with 0.25 degrees grid size at the tropics), cloud detection uncertainties are positively correlated with cloud-cover fraction in the cell, and are larger during the day than at night. Daytime cloud detection uncertainties range between 2.5 K for clear-sky fractions of 10-20 % and 1.03 K for clear-sky fractions of 90-100 %. Corresponding nighttime uncertainties are 1.6 K and 0.38 K respectively. Cloud detection uncertainty shows a weaker positive correlation with the number of biomes present within a grid cell, used as a measure of heterogeneity in the background against which the cloud detection must operate (eg. surface temperature, emissivity and reflectance). Uncertainty due to cloud detection errors is strongly dependent on the dominant land cover classification. We find cloud detection uncertainties of magnitude 1.95 K over permanent snow and ice, 1.2 K over open forest, 0.9-1 K over bare soils and 0.09 K over mosaic cropland, for a standardised clear-sky fraction of 74.2 %. As the uncertainties arising from cloud detection errors are of a significant magnitude for many surface types, and spatially heterogeneous where land classification varies rapidly, LST data producers are encouraged to quantify cloud-related uncertainties in gridded products

    A phase III trial comparing an anionic phospholipid-based cream and aloe vera-based gel in the prevention of radiation dermatitis in pediatric patients

    Get PDF
    <p>Abstract</p> <p>Purpose</p> <p>Radiation dermatitis is a common side effect of radiation therapy (RT). In severe cases, RT must be interrupted until the skin heals, which can compromise treatment. The purpose of the study was to compare an anionic polar phospholipid (APP)-based cream and an aloe vera-based gel to determine their effectiveness in preventing and treating radiation dermatitis.</p> <p>Patients and methods</p> <p>Forty-five pediatric patients (median age, 11 years) with various diagnoses who received at least 23.4 Gy participated. APP cream and aloe vera gel were symmetrically applied within the irradiated field after each treatment. Three measures were collected before, during and after completion of treatment: subject's skin comfort, dermatologic assessment, and common toxicity criteria (CTC).</p> <p>Results</p> <p>Significant differences in specific variables favoring APP cream use were noted in some patients including skin comfort variables, dry (<it>p </it>= 0.002), soft (<it>p </it>= 0.057), feels good (<it>p </it>= 0.002), rough (<it>p </it>= 0.065), smooth (<it>p = 0.012</it>) and dermatologic variables, dryness (<it>p </it>= 0.013), erythema (<it>p </it>= 0.002) and peely (<it>p </it>= 0.008). Grouped CTC scores were supportive of APP cream (<it>p </it>= 0.004). In comparing the first and last assessments, two dermatologic variables, dryness (<it>p </it>= 0.035) and peely (<it>p </it>= 0.016), favored APP cream.</p> <p>Conclusion</p> <p>APP cream is more effective than aloe vera-based gel for prevention and treatment of radiation dermatitis.</p

    A knowledge-guided active model method of skull segmentation on T1-weighted MR images

    Get PDF
    Skull is the anatomic landmark for patient set up of head radiation therapy. Skull is generally segmented from CT images because CT provides better definition of skull than MR imaging. In the mean time, radiation therapy is planned on MR images for soft tissue information. This study utilized a knowledge-guided active model (KAM) method to segmented skull on MR images in order to enable radiation therapy planning with MR images as the primary planning dataset. KAM utilized age-specific skull mesh models that segmented from CT images using a conditional region growing algorithm. Skull models were transformed to given MR images using an affine registration algorithm based on normalized mutual information. The transformed mesh models actively located skull boundaries by minimizing their total energy. The preliminary validation was performed on MR and CT images from five patients. The KAM segmented skulls were compared with those segmented from CT images. The average image similarity (kappa index) was 0.57. The initial validation showed that it was promising to segment skulls directly on MR images using KAM

    Quantifying the response of the ORAC aerosol optical depth retrieval for MSG SEVIRI to aerosol model assumptions

    Get PDF
    We test the response of the Oxford-RAL Aerosol and Cloud (ORAC) retrieval algorithm for MSG SEVIRI to changes in the aerosol properties used in the dust aerosol model, using data from the Dust Outflow and Deposition to the Ocean (DODO) flight campaign in August 2006. We find that using the observed DODO free tropospheric aerosol size distribution and refractive index increases simulated top of the atmosphere radiance at 0.55 µm assuming a fixed erosol optical depth of 0.5 by 10–15 %, reaching a maximum difference at low solar zenith angles. We test the sensitivity of the retrieval to the vertical distribution f the aerosol and find that this is unimportant in determining simulated radiance at 0.55 µm. We also test the ability of the ORAC retrieval when used to produce the GlobAerosol dataset to correctly identify continental aerosol outflow from the African continent and we find that it poorly constrains aerosol speciation. We develop spatially and temporally resolved prior distributions of aerosols to inform the retrieval which incorporates five aerosol models: desert dust, maritime, biomass burning, urban and continental. We use a Saharan Dust Index and the GEOS-Chem chemistry transport model to describe dust and biomass burning aerosol outflow, and compare AOD using our speciation against the GlobAerosol retrieval during January and July 2006. We find AOD discrepancies of 0.2–1 over regions of intense biomass burning outflow, where AOD from our aerosol speciation and GlobAerosol speciation can differ by as much as 50 - 70 %

    cIMPACT‐NOW update 7: advancing the molecular classification of ependymal tumors

    Full text link
    Advances in our understanding of the biological basis and molecular characteristics of ependymal tumors since the latest iteration of the World Health Organization (WHO) classification of CNS tumors (2016) have prompted the cIMPACT‐NOW group to recommend a new classification. Separation of ependymal tumors by anatomic site is an important principle of the new classification and was prompted by methylome profiling data to indicate that molecular groups of ependymal tumors in the posterior fossa and supratentorial and spinal compartments are distinct. Common recurrent genetic or epigenetic alterations found in tumors belonging to the main molecular groups have been used to define tumor types at intracranial sites; C11orf95 and YAP1 fusion genes for supratentorial tumors and two types of posterior fossa ependymoma defined by methylation group, PFA and PFB. A recently described type of aggressive spinal ependymoma with MYCN amplification has also been included. Myxopapillary ependymoma and subependymoma have been retained as histopathologically defined tumor types, but the classification has dropped the distinction between classic and anaplastic ependymoma. While the cIMPACT‐NOW group considered that data to inform assignment of grade to molecularly defined ependymomas are insufficiently mature, it recommends assigning WHO grade 2 to myxopapillary ependymoma and allows grade 2 or grade 3 to be assigned to ependymomas not defined by molecular status.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/162791/2/bpa12866_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162791/1/bpa12866.pd

    Valgus and varus deformity after wide-local excision, brachytherapy and external beam irradiation in two children with lower extremity synovial cell sarcoma: case report

    Get PDF
    BACKGROUND: Limb-salvage is a primary objective in the management of extremity soft-tissue sarcoma in adults and children. Wide-local excision combined with radiation therapy is effective in achieving local tumor control with acceptable morbidity and good functional outcomes for most patients. CASE PRESENTATION: Two cases of deformity after wide-local excision, brachytherapy and external beam irradiation for lower-extremity synovial cell sarcoma are presented and discussed to highlight contributing factors, time course of radiation effects and orthopedic management. In an effort to spare normal tissues from the long-term effects of radiation therapy, more focal irradiation techniques have been applied to patients with musculoskeletal tumors including brachytherapy and conformal radiation therapy. As illustrated in this report, the use of these techniques results in the asymmetric irradiation of growth plates and contributes to the development of valgus or varus deformity and leg-length discrepancies. CONCLUSIONS: Despite good functional outcomes, progressive deformity in both patients required epiphysiodesis more than 3 years after initial management. There is a dearth of information related to the effects of radiation therapy on the musculoskeletal system in children. Because limb-sparing approaches are to be highlighted in the next generation of cooperative group protocols for children with musculoskeletal tumors, documentation of the effects of surgery and radiation therapy will lead to improved decision making in the selection of the best treatment approach and in the follow-up of these patients

    Investigating the Role of Hypothalamic Tumor Involvement in Sleep and Cognitive Outcomes Among Children Treated for Craniopharyngioma

    Get PDF
    Objective: Despite excellent survival prognosis, children treated for craniopharyngioma experience significant morbidity. We examined the role of hypothalamic involvement (HI) in excessive daytime sleepiness (EDS) and attention regulation in children enrolled on a Phase II trial of limited surgery and proton therapy. Methods: Participants completed a sleep evaluation (N = 62) and a continuous performance test (CPT) during functional magnetic resonance imaging (fMRI; n = 29) prior to proton therapy. Results: EDS was identified in 76% of the patients and was significantly related to increased HI extent (p = .04). There was no relationship between CPT performance during fMRI and HI or EDS. Visual examination of group composite fMRI images revealed greater spatial extent of activation in frontal cortical regions in patients with EDS, consistent with a compensatory activation hypothesis. Conclusion: Routine screening for sleep problems during therapy is indicated for children with craniopharyngioma, to optimize the timing of interventions and reduce long-term morbidity

    Satellite-based time-series of sea-surface temperature since 1981 for climate applications

    Get PDF
    A climate data record of global sea surface temperature (SST) spanning 1981–2016 has been developed from 4 × 10^12 satellite measurements of thermal infra-red radiance. The spatial area represented by pixel SST estimates is between 1 km^2 and 45 km^2. The mean density of good-quality observations is 13 km^−2 yr^−1. SST uncertainty is evaluated per datum, the median uncertainty for pixel SSTs being 0.18 K. Multi-annual observational stability relative to drifting buoy measurements is within 0.003 K yr^−1 of zero with high confidence, despite maximal independence from in situ SSTs over the latter two decades of the record. Data are provided at native resolution, gridded at 0.05° latitude-longitude resolution (individual sensors), and aggregated and gap-filled on a daily 0.05° grid. Skin SSTs, depth-adjusted SSTs de-aliased with respect to the diurnal cycle, and SST anomalies are provided. Target applications of the dataset include: climate and ocean model evaluation; quantification of marine change and variability (including marine heatwaves); climate and ocean-atmosphere processes; and specific applications in ocean ecology, oceanography and geophysics
    corecore